Current status of the California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM)

IWFM User's Group Meeting October 28, 2008

Charles Brush

Hydrology & Operations, Bay-Delta Office
California Department of Water Resources
Sacramento, CA

Acknowledgements

Tariq Kadir, Can Dogrul, Francis Chung Michael Moncrief* and Jeff Galef California Department of Water Resources

Steve Shultz and Dan Wendell CH₂MHill

Matt Tonkin
SS Papadopulos & Associates

* currently with MBK Engineers

Outline

- Central Valley Development
- Overview of the C2VSIM model
- Geology of Central Valley Aquifer
- Model Calibration and Performance
- Water budgets
- Scenarios
 - In-Lieu Conjunctive Use Scenario
 - Climate Change Scenarios
- Summary

C2VSIM Model Grid

Finite Element Grid

- 3 layers
- 1393 nodes
- 1392 elements

Surface Water System

- 75 river reaches
- 2 lakes
- 97 surface water diversion points
- 6 bypasses

Land Use Process

- 21 subregions
- 4 Land Use Types
 - Agriculture
 - Urban
 - Native
 - Riparian

Simulation periods

- 10/1921-9/2003
- 10/1972-9/2003 (<4 min)

Groundwater Model Components

Component Source WY 1973-2003 **Parameters** calibration: Initial conditions water-level observations, 10/1921 or 10/1972 **Boundary conditions** - Precipitation & evapotranspiration - Surface water inflows & diversions Recharge & Pumping calc - Land use & crop acreages - Crop coefficients - Soil type, SCS curve number - Pump locations (well database)

C2VSIM Subregions

Water Budget Calculations

- Land use by element
- Aggregate to subregion

By land use in subregion:

- Calculate water demands
- Apply soil moisture
- Apply surface water diversions
- Apply/estimate groundwater pumping
- Calculate soil moisture, recharge, return flows

Allocate to elements by land use areas

Generalized Cross Section Near Woodland, California

C2VSIM Initial Calibration

Pilot Points

139 in layers 1 and 2 $(K_h, K_v, S_v, \overline{S_s})$

39 in layer 3 (K_h , K_v , S_s)

19 for Corcoran Clay (K_v)

Calibration Observations

Sites	per site	total
221 groundwater head	52	10,503
9 vertical head gradient	52	1,976
9 river flow	52*	3,276
34 stream-groundwater flow reaches	1**	34

Calibration Period Water Years 1975-99 (IC 10/1972)
Validation Period Water Years 1975-99 (IC 10/1921)

^{*} For 8 of 9, ** monthly average rate

Hydraulic Conductivity

Specific Yield & Kv of Corcoran Clay

Streambed Conductance

Model Improvements 2006-2008

- IWFM v2.3 to v3.01
- Distributed monthly precipitation using PRISM
- Groundwater pumping distribution matches well log database
- Added new small watersheds around valley rim
- Corrected errors in diversions and surface water imports
- Modified Buena Vista Lake and Tulare Lake
- Modified representations of the lower Kern River, Kings River, Kaweah River, Tule River, Sacramento-San Joaquin Delta

Current C2VSIM Calibration

Initiated September 2008, Complete February 2009

Improved IWFM-PEST utilities

Expand number of pilot points

Increase calibration data set (observations)
especially vertical head gradients, stream-groundwater flow

Compare output to other DWR water budget data

Parameter Sensitivities vs. Observation Types

Simulated Water Budget Components

Average Annual Rates for Water Years 1975-2003

	Storage	Stream Leakage	Subsidence	Pumpage	Recharge	Interbasin Flows
Sacramento Valley	200,174	-350,859	51	-2,089,333	2,225,060	14,908
Delta	-82,464	-30,188	-105	-204,022	430,915	-114,136
Eastside Streams	139,029	109,888	50	-771,925	308,327	214,631
San Joaquin Basin	150,969	-499,100	798	-1,414,172	1,935,691	-174,196
Tulare Basin	-2,109,300	-485,561	-9,533	-3,807,986	6,350,697	58,794
Model Area	-1,701,592	-1,255,821	-8,739	-8,287,438	11,250,690	0

Acre-Feet per Year

Simulated Water Budget Components

Average Annual Rates for Water Years 1975-2003

	Surface Water Inflows*	Surface Water Outflows*	Precipitation	Actual Evapo- transpiration
Sacramento Valley	19,955,538	17,759,801	6,849,346	8,472,276
Delta	31,005,209	25,564,486	926,265	1,533,207
Eastside Streams	1,307,325	1,443,871	1,405,900	1,683,961
San Joaquin Basin	5,820,154	4,535,437	2,521,049	5,544,759
Tulare Basin	3,220,309	1,179,001	3,584,871	10,596,423
Model Area	30,923,480	26,783,332	15,287,431	27,830,625

^{*} Surface water inflows and outflows do not add up across hydrologic regions

Acre-Feet per Year

Water Budget

C2VSIM Applications

- Groundwater component of CALSIM-III
- Response of Central Valley groundwater systems to prolonged drought (with Norm Miller, Larry Dale and Sebastian Vicuna of LBL/UCB)
- Impacts of conjunctive use groundwater extraction on stream-groundwater interactions in the Sacramento Valley

C2VSIM Applications Groundwater Response to Extended Drought

C2VSIM Applications Groundwater Impacts on River Flow

C2VSIM Applications Groundwater Impacts on River Flow

C2VSIM Applications Groundwater Impacts on River Flow

WATER YEAR

Summary

C2VSIM model performs well

- Regional parameters provide good results
- Lots of information areal recharge, storage, GW-SW
- Groundwater pumping estimates look reasonable
- Subregional 'virtual farms' limit spatial resolution
- Useful for basin-wide assessments of groundwater response and impacts

Further model calibration

- Improved IWFM-PEST tools
- Increase spatial variability of parameters
- Increase observation data set
- Planned release in spring 2009

Future Work

Spatial refinement of model grid?

Review selected water budget components:

- Aquifer storage and recovery programs (direct recharge & pumping)
- Groundwater exports
- High wet-season diversions (refuges?)
- Check crop ET values
- Verify simulated runoff

